J.E. McGimpsey said:
Given their big "mea culpa" on statistical functions,
http://support.microsoft.com/?kbid=828888
I'm hopeful.
Sadly, I'm less hopeful. It is undoubtedly a step in the right
direction but not everything in
http://support.microsoft.com/?kbid=828888 is correct, nor are all the
improvements discussed in it always improvements!
For example, it contains the following paragraph.
"In summary, users of earlier versions of Excel should not be troubled
in practice by numeric deficiencies because input values that cause
#NUM! results are extreme. Additionally, you can be assured that if
you receive a result other than an error message, the result is
accurate. Round off error is not a problem here."
Unfortunately this is not correct. A counter-example is
=NEGBINOMDIST(512,512,0.5) which gives 0 when the answer should be
approx 0.0125. Note the parameters are not "big" nor is the answer
"small" by anyone's standards (i.e. there can be no "extreme case"
excuses).
Additionally in the section "Continuous Distribution Inverse
Functions" the suggestion is that the only real problem was the lack
of a good binary search process. In fact, in EXCEL 2000, neither
gammadist nor betadist works even for moderately large parameters,
which is a pretty big hindrance for function inversion!
=GAMMADIST(7000,7000,1,TRUE) gives #NUM!,
=BETADIST(0.5,30000,30000,0,1) also gives #NUM!
I do not wish to unduly criticise the new code added for
BINOMDIST,HYPGEOMDIST & POISSON. In most cases it is an improvement,
albeit it will be very slow when large parameter values are supplied
to the functions. However, for cases such as =POISSON(126,230,TRUE)
the relative error will go from 3e-14 to 0.5. Worse still, cases such
as =POISSON(125,230,TRUE) and =POISSON(125,230,FALSE) will both return
the value 0 which is completely inaccurate. Admittedly, the values are
small in these cases, =POISSON(126,230,TRUE) should deliver approx
5e-14. However, unbelievable though it may seem to Microsoft, there
are wierdos about (self included) who want accurate calculations of
probabilities smaller than 5e-14, who want accurate calculations of
probability functions involving parameters bigger than 30000 and who
want these calculations done lots of times which means they have to be
reasonably efficient!
Ian Smith